

$\begin{array}{l} \mbox{Semileptonic measurements}\\ \mbox{overview and prospects,}\\ \mbox{with a focus on } |V_{ub}| \mbox{and } |V_{cb}| \end{array}$

<u>Alexandre Brea</u>, on behalf of the LHCb collaboration

LHCb Implications Workshop 2024 23/10/2024

V_{ub} and **V**_{cb}

- CKM Matrix elements are **fundamental** SM parameters: Precise determinations are important

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- $|V_{ub}|$ and $|V_{cb}|$ represent a long-standing puzzle.
- Complementary methods yield **inconsistent results**.
- Limits their precision.

- We need to know $|V_{ub}|$ and $|V_{cb}|$ precisely to constraint the Unitary Triangle of the CKM matrix.

Determining the $|V_{ub}|$ and $|V_{cb}|$ matrix elements

- Usually, done with semileptonic decays $X_b \to X_{c,u} \, l \, \nu$
- **Theoretically clean** (only one hadronic current).
- Experimentally feasible (large enough BFs).

- Leptonic B -> $l \nu$ decays are theoretically simpler, but **experimentally much harder**.
- Only one signal track (or τ decay) and small BFs.

- Described by **form factors** (FFs):
- Functions of $q^2 = (p_\mu + p_\nu)^2$
- Calculated with num-methods: LCSR (small q²) or LQCD (high q²)

Two complementary methods to determine $|V_{ub}|$ and $|V_{cb}|$

- **Exclusive** and **inclusive** semileptonic $X_b \rightarrow X_{c,u} l \nu$ decays.
- Largely theoretically and experimentally independent.
 - Long-standing tension ($\sim 3 \sigma$).
 - Limits the precision of SM tests and sensitivity to NP.

Semileptonic Decays: Some Ingredients

$$m_{\text{corr}}(X_b) = \sqrt{m(X_q l)^2 + p_{\perp}(X_q l)^2} + p_{\perp}(X_q l)$$

- Determining q² up to a two-fold ambiguity.
- Degraded q² resolution.
- Unfolding required to obtain the true q^{2.}

Measuring $|V_{ub}|$ and $|V_{cb}|$ at LHCb

- At LHCb, exclusive semileptonic decays can be measured (inclusive semileptonic decays are measured at the B factories) \rightarrow Largely theoretically and experimentally independent.

- Normalisation decays used to cancel $b\overline{b}$ production uncertainties \rightarrow External inputs: e.g. normalization BFs, fragmentation fractions etc.

PROS

• **Large samples** of B mesons, as well as heavier b hadrons, including B_{s}^{0} , B_{c}^{+} and Λ_{b}^{0} .

CONS

- Hadronic environment, unreconstructed ν \rightarrow Large backgrounds.
- The *bb* production rate cannot be determined precisely -> large uncertainty of measured BFs.

Measurement of $|\mathbf{V_{cb}}|$ from the $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ [<u>Phys. Rev. D 101 (2020</u>]

- First $|V_{ch}|$ extraction from a B_s^0 decay.
- Dataset: 1 fb⁻¹ @ $\sqrt{s} = 7$ TeV and 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV (Run1), Normalisation: $B^0 \rightarrow D^{(*)-}\mu^+\nu_{\mu}$

Measurement of $|V_{ub}|$ from the $\Lambda_b^0 \rightarrow p \, \mu^- \bar{\nu}_{\mu}$

- First $\Lambda_b^0 \to p \ \mu^- \overline{\nu}_{\mu}$ observation and $|\mathbf{V_{ub}}|$ extraction from baryonic decay. Dataset: 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV (Run1, 2012), Norm: $\Lambda_b^0 \to \Lambda_c^+ \ \mu^- \overline{\nu}_{\mu} \ (\Lambda_c^+ \to p \ K^- \pi^+)$ Extracting $|\mathbf{V_{ub}}|$ from the BF ratio: -> Measured in the **high q² region**

 $|V_{ub}| = (3.27\pm0.15 \text{ (stat)}\pm0.16 \text{ (LQCD)}\pm0.06 \text{ (}|V_{cb}|\text{)}) \times 10^{-3}$ **Agrees** with exclusively measured average [arXiv:1412.7515] **Disagrees** (3.5 σ) with inclusively measured average

<u>FFs with LQCD @ high q²</u> <u>Exclusive $|V_{cb}|$ world average</u> <u>BF $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ by Belle</u>

[Phys. Rev. D 92 (2015)]

Largest uncertainty from LQCD calculations ($\sigma_{FF}/|V_{ub}|$) ~5%

Largest external uncertainty from $BF_{\Lambda_c^+ \to pK^-\pi^+} \sim 5\%$ [Phys. Rev. Lett. 113 (2014)]

Corrected $pK^{-}\pi^{+}\mu^{-}$ mass (MeV/c²)

Normalisation Fit

23/10/2024

5,500

Alexandre Brea

Measurement of $|V_{ub}|/|V_{cb}|$ from the $B_s^0 \to K^- \mu^+ \nu_{\mu}$

[<u>Phys. Rev. Lett. 126 (2021)</u>]

First $B_s^0 \to K^- \mu^+ \nu_\mu$ observation, $|\mathbf{V_{ub}}|$ extraction from a B_s^0 decay

Dataset: 2 fb⁻¹ @ \sqrt{s} = 8 TeV Run1 (2012)

Normalisation: $B_s^0 \to D_s^- \mu^+ \nu_{\mu}$ with $D_s^- \to K^+ K^- \pi^-$ [External BF measurement]

Extracting $|V_{ub}|/|V_{cb}|$ from the BF ratio (measured in two q² bins)

 $q^2 < 7 \text{ GeV}^2/c^4$:

 $|V_{ub}| / |V_{cb}| = 0.0607 \pm 0.015 \text{ (stat)} \pm 0.0012 \text{ (syst)} \pm 0.0008 \text{ (Ds)} \pm 0.0030 \text{ (FF)}$

 $q^2 > 7 \text{ GeV}^2/c^4$:

 $|V_{ub}|/|V_{cb}| = 0.0946 \pm 0.030 \text{ (stat)} \stackrel{+ 0.0024}{- 0.0025} \text{ (syst)} \pm 0.0013 \text{ (Ds)} \pm 0.0068 \text{ (FF)}$ Tension driven by the difference in the FF calculations

Dominant uncertainties from FF calculations:

- Low $q^2: \sigma/(|V_{ub}|/|V_{cb}|) \sim 5\%$ [<u>JHEP 2017, 112 (2017)</u>]
- High q²: $\sigma/(|V_{ub}|/|V_{cb}|) \sim 7\%$ [<u>Phys. Rev. D 100, 034501 (2019)</u>]

Summary of LHCb $|V_{ub}|$ and $|V_{cb}|$ results

Exclusive & inclusive measurements in the ($\left|V_{cb}\right|$, $\left|V_{ub}\right|$) plane

Exclusive & inclusive V_{cb}

23/10/2024

Plot taken from this talk by M. de Cian, FPCP (2021)

Alexandre Brea

Future measurements at LHCb

Observable	Decay Channel	Tentative publication date				
$ V_{us} $	$\Lambda o p \ \mu^- \overline{ u}_\mu$	Early next year				
$ \mathbf{V_{ub}} $	$B^+ ightarrow ho^0 \mu^+ u_\mu$	Early next year				
→ Expecting > 50 times higher signal yield wrt. to Belle						
$ \mathbf{V_{ub}} $	$B_s^0 \to K^- \mu^+ \nu_\mu$	Late next year				
\rightarrow Expecting a ~ 5-6 times higher signal yield wrt. to Run 1						
$ \mathbf{V_{cb}} $	$\Lambda_b^0 o \Lambda_c^+ \ \mu^- \overline{oldsymbol{ u}}_\mu$	Late next year				
\rightarrow First determination of the $ V_{cb} $ from a baryonic semileptonic decay						
$ \mathbf{V}_{ub} / \mathbf{V}_{cb} $	$B_c^+ \rightarrow D^{(*)0} \mu^+ \nu_{\mu}$	Late next year				
\rightarrow First CKM matrix element determined from B_c^+ system						
$ \mathbf{V}_{ub} , \mathbf{V}_{cb} $	$B^+_{(c)} o au^+ u_ au$	-				
exandre Brea	12					

V_{us} (Cabbibo Anomaly)

- Strangeness changing SL decays can provide the **most sensitive** test of the unitarity of the CKM matrix (since $|V_{ub}|^2$ is almost negligible) through the relation

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

- The experimental result is:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$

Showing a 2.2σ tension with the expected unitarity in the first CKM row.

23/10/2024

- 3σ discrepancy in V_{us} measurements in leptonic (*K* μ ²) and semileptonic (*K*l₃) kaon decays.

Can hint towards two potential scenarios:

- Existence of physics beyond the SM
- Significant, yet unidentified, systematic effect within the SM itself.

[<u>Phys. Rev. Lett. 114 no. 16, (2015)</u>]

$$\Lambda \to p \, \mu^- \bar{\nu}_{\mu}$$

[*J. High Energ. Phys.* 2019, 48 (2019)] [*J. Phys. Conf. Ser.* 1526 012022 (2020)]

$$R^{\mu e} = \frac{\Gamma(B_1 \to B_2 \mu^- \bar{\nu}_{\mu})}{\Gamma(B_1 \to B_2 e^- \bar{\nu}_e)} \qquad R^{\mu e}_{\rm SM} = \sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}} \left(1 - \frac{9}{2} \frac{m_{\mu}^2}{\Delta^2} - 4 \frac{m_{\mu}^4}{\Delta^4}\right) + \frac{15}{2} \frac{m_{\mu}^4}{\Delta^4} \operatorname{arctanh}\left(\sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}}\right) = 0.153 \pm 0.008$$

- **Clean theoretical prediction** for the decay rate (going to order δ^2) $\Delta = \frac{M_1 - M_2}{M_1 - M_2}$ $g_1(0) = h_1$ $\delta = \frac{M_1 - M_2}{M_1 - M_2}$ $g_1(0) = h_2$

$$\begin{split} &\Delta = M_1 - M_2 \quad f_1(0) = hyperon \ vector \ charge \\ &\delta = \frac{M_1 - M_2}{M_1} \quad g_1(0) = hyperon \ axial \ charge \end{split}$$

- $|V_{us}|$ can be extracted from the BF
- Adding **hyperons** results to the puzzle

1140 M(pμ) (MeV/c²) • $\Lambda^0 \rightarrow p^+ \mu^- \overline{\nu}$ LHCb Simulation 1120 1110 1100 1090 1080 1070 1060 1050 1040 50 100 p_{T} (MeV/c) LHCB-FIGURE-2019-006

- Best branching ratio measurement from BESIII (2021): $\mathscr{B}(\Lambda \rightarrow p \ \mu^- \overline{\nu}_{\mu}) = (1.48 \pm 0.21) \ge 10^{-4}$ (14.19 % Uncertainty)

Dataset: 5.4 fb⁻¹ @ \sqrt{s} = 13 TeV (Run2), Norm. : $\Lambda \rightarrow p \pi^-$ 44K pre-selected signal events $\rightarrow \sim 1.5$ % stat. unc. Dominated by systematic uncertainties Publication expected early next year

 $\varXi^- \to \Lambda \, \mu^- \overline{\nu}_\mu$ proposed as the next natural step

$\sum_{\sigma^0}^{\nu_{\mu}} B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_{\mu}$

[Phys. Rev. D 83, 032007 (2011)]
 [Phys. Rev. D 88, 032005 (2013)]
 [arXiv:2407.17403(2024)]

- Large discrepancy between BaBar and Belle/Belle2.
- A new, **precise measurement** from LHCb will **help** to solve the tension.
- Large LHCb data sample → precise determination of the differential decay rate and |V_{ub}|.
- Signal yield extracted from a 2D template fit to m_{corr} and $m_{\pi\pi}$ in O(10) non-uniform q² bins.

Experiment	BR (10 ⁻⁴)	Stat. (10 ⁻⁴)	Syst. (10 ⁻⁴)
BaBar ¹	1.00	0.10	0.17
Belle ²	1.83	0.10	0.10
Belle2 3 364 fb-1 preliminary	1.625	0.079	0.18

- Main Backgrounds: $B^+ \rightarrow \overline{D}^0(\pi^+\pi^-X^0)\mu^+\nu_\mu(X)$ $B^{+,0} \rightarrow X_u \mu^+\nu_\mu$ (varius charmless semileptonic decays) $B^+ \rightarrow \pi^+\pi^-\mu^+\nu_\mu$ (with non-resonant $\pi^+\pi^-$)

- **Prospects**:

- Expected statistical sensitivity on BF per q² bin O(5%-6%), using 2018 data (~ 2fb-1).
- Systematic uncertainty O(5%-9%), dominated by uncertainty on $m_{\pi\pi}$ shape of the non-resonant component. External systematic uncertainty 4.2%.

Alexandre Brea

 R^+

[M. Calvi <u>Slides</u> (2024)]

New $B_s^0 \to K^- \mu^+ \nu_{\mu}$ analysis with **Run2** data ongoing. (2016-2018) Larger data set (~**5**x) of data \to binned BF in **O(10)** q² bins. Aim a measurement of |**Vub**| **independent** of |Vcb|.

$$\Delta \mathcal{B}_{i} = \frac{N_{sig,i}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{f_{u}}{f_{s}} \mathcal{B}_{norm}$$

 $B_{s}^{0} \rightarrow K^{-}\mu^{+}\nu_{\mu}$

Signal Fit Maximum-likelihood fit in HistFactory framework Simultaneous in O(10) q² bins and three years Toy MonteCarlo with signal and two physics background contributions LHCb simula the start + B.- K Bach + R-Kirv + 8- K + 1 Richards + B. K. 1. + 8,- 16,00 - B. Kar - E-Kirr + E.K.c. + 10-10. + 8, - K aV

 $\begin{array}{l} f_{\rm s}/f_{\rm d} = 0.2539 \pm 0.079 \\ 1.9 \ \% \ from \ Norm \ BF \\ 3.1 \ \% \ from \ f_{\rm s}/f_{\rm d} \end{array}$

FF determination:

- Several FF schemes available to describe signal shape.
- Baseline FF not defined yet (FLAG24 average?)
- Could provide results with different options
- Dependence of fitted signal yields with FF reduced using high number of bins.
- Dependence of signal eff. per bin on FF to be determined

Same FF scheme used to fit
$$\frac{dB}{da^2}$$
 and determine $|V_{ub}|$

$$\frac{dB}{dq^2} = \frac{d\Gamma_{sig}^0}{dq^2} |V_{ub}|^2 \tau_B$$

Alexandre Brea

16

$$B^+_{(c)} o au^+
u_ au$$

 $B^+ o au^+
u_{ au}$

- This pure leptonic B decay allows for **precise** SM tests.
- Much larger BF (helicity suppression)
- Clean experimental determination of V_{ub} , test BSM models.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B$$
$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$$

$B_c^+ o au^+ u_{ au}$

- **b** \rightarrow **c** $\tau \nu$ transition (R_D , R_{D^*} , $R_{J/\Psi}$), but in annihilation diagram form.
- Fully leptonic final state: Very beneficial for theory predictions, relevant dependence on V_{cb}
- At this moment, **just LHCb can do it**.

Alexandre Brea

Searching for hits in the Vertex Locator (Run 3)

Using heavy flavour tracking

- Look for hits between PV and SV.
- Have better B-hadron direction estimate,
- better corrected mass.
- Having hits is a distinguishing feature itself.
- Trade efficiency for much-needed purity.
 Feasibility in progress

Kinematic Strategy for predicting SV (Run 2 Data)

Valid cluster found for ~50% of events.
Resolution comparable to using TRUE SV
The main challenge will be the low signal purity
Currently working on ML to remove comb. Bkg.
Feasibility in progress

Alexandre Brea

Conclusion and outlook

- LHCb has measured $|V_{ub}|$ and $|V_{cb}|$ from new **exclusive** channels involving Λ_b^0 baryons and B_s^0 mesons
- Constraining the Unitary Triangle of the CKM matrix.
- Providing complementary information to understand the long-standing tension between the exclusive and inclusive determinations.
- More LHCb measurements next year:
- Larger signal samples (reducing statistical and systematic uncertainties)
- Measuring new semileptonic channels
- Improving $|V_{ub}|$ precision from $B_s^0 \to K^- \mu^+ \nu_{\mu}$ through a differential measurement.
- Addressing the Cabibbo anomaly with a SHD ($|V_{us}|$) measurement.
- Exciting ideas for the future:
- Aiming to measure $B_c^+ \to \tau^+ \nu_{\tau}$ for the first time and also $B^+ \to \tau^+ \nu_{\tau}$

Measurement of **V**_{cb} from the $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

Measurement of $|V_{cb}|$ from the $B_s^0 \rightarrow D_s^{(*)-}$ Phys. Rev. D 101 (2020)

- First $|\mathbf{V_{ch}}|$ extraction from a B_s^0 decay.
- Dataset: 1 fb⁻¹ @ $\sqrt{s} = 7$ TeV and 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV (Run1), Normalisation: $B^0 \rightarrow D^{(*)} \mu^+ \nu_{\mu}$

Alexandre Brea

Slides from this talk by Veronica Kirsebom, IW (2023)

Measurement of $|V_{cb}|$ from the $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

- Differential decay rates ($m_\mu \approx 0$):

$$\frac{d\Gamma(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D^2)^2 \eta_{EW}^2 \times |V_{cb}|^2 (w^2 - 1)^{3/2} |G(w)|^2$$

One FF
$$\frac{d^4 \Gamma(B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu})}{dwd \cos \theta_{\mu} d \cos \theta_D d\chi} = \frac{3G_F^2 m_{B_s}^3 m_{D_s^*}^2}{16(4\pi)^4} \eta_{EW}^2 \times |V_{cb}|^2 |A(w, \theta_{\mu}, \theta_D, \chi)|^2$$

Three FFs

Where $w = v_{B_s^0} \times v_{D_s^{(*)-}}$ is the hadronic recoil variable that depends on q^2 and θ_D , θ_μ and χ are the three helicity angles: 7

>> Alternative method to infer FFs.

- Usually, FFs are extracted by measuring the decay distribution wrt. q^2 or $w = w(q^2)$.
- This analysis exploits a new variable, $p_{\perp}(D_s^-)$, which is an approximation of *w*.

 \rightarrow Strongly correlated with *w*, and thus, with the FFs.

 \rightarrow Can be fully reconstructed.

FFs can be modelled with the parameterisations:

CLN: Caprini, Lellouch and Neubert [Nucl. Phys. B530 (1998) 153]

BGL: Boyd, Grinstein and Lebed [Phys. Rev. Lett. 74 (1995) 4603]

Differential measurements allow us to extract information on the FFs.

Limitations on the $|V_{cb}|$ precision:

Uncertainty is dominated by external inputs:

→ $f_s/f_d \times BF(D_s^- \to K^+K^-\pi^-)(\times \tau_{B_s})$ with $\sigma/|V_{cb}|$ ~ 2 %. [Phys. Rev.D 100, 031102 (2019), Phys. Rev. Lett. 124, 122002 (2020)].

 \rightarrow Normalisation BFs with $\sigma/\left|V_{cb}\right| \sim 2~\%$. [Phys. Rev. D 98, 030001 (2018)].

Largest systematic uncertainty:

 $ightarrow D_{(s)}
ightarrow K^+ K^- \pi^-$ modelling with $\sigma/ \left| \left. V_{cb} \right|
ight. \sim 2 ~\%$.

Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-}\mu^+\nu_{\mu}$ differential decay rate [J. High Energ. Phys. 144 (2020)]

 \rightarrow Both fits give consistent results and describe the measured spectrum well.

23/10/2024

 \rightarrow Results allows to constrain FF parameterisations.

Alexandre Brea

Measurement of $|V_{cb}|$ from the $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

Exclusive measurements – $|V_{cb}|$

• $\frac{d^4\Gamma(B \to D^{*0}\mu\nu)}{dwd\Omega} = \frac{3m_B^3 m_{D^{*0}}^2 G_F^2}{16(4\pi)^4} \eta_{EW}^2 |V_{cb}|^2 |\mathcal{A}(w,\Omega)|^2, w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^{*0}}}$

- Helicity amplitudes in $\mathcal{A}(w,\Omega)$ depend on 3 form factors: $h_{A_1}(w), R_1(w), R_2(w)$
- External input: $\eta_{EW} = 1.0066$

CLN parametrisation ightarrow 4 free parameters: $ho^2, h_{A_1}, R_1(1), R_2(1)$ [Nucl. Phys. B530, 153 (1998)]

$$h_{A_1}(w) = h_{A_1}(1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right)$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$$

$$R_2(w) = R_2(1) - 0.11(w - 1) - 0.06(w - 1)^2$$

BGL parametrisation \rightarrow Converging series [PRL 74, 4603 (1995)]

$$\begin{split} f(z) &= \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{\infty} b_{n} z^{n} \qquad z = \frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}} \\ g(z) &= \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{\infty} a_{n} z^{n} \\ \mathcal{F}_{1}(z) &= \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{\infty} c_{n} z^{n} \end{split}$$

Similar, but simpler for $B^+ \!
ightarrow D^0 \mu^+
u_\mu$

From this talk by M. de Cian, FPCP (2021)

Alexandre Brea

Measurement of $|V_{ub}|$ from the $\Lambda_b^0 \rightarrow p \,\mu^- \bar{\nu}_\mu$

Alexandre Brea

27

Measurement of $|V_{ub}|/|V_{cb}|$ from the $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$

Alexandre Brea

 $B^+ \to \rho^0 (\pi^+ \pi^-) \mu^+ \nu_\mu$

[M. Calvi <u>Slides</u> (2024)]

 $B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$

- Goal: measure the differential decay rate in q² bins
- The ρ^0 decays exclusively via $\rho^0 \to \pi^+\pi^-$.
- Norm mode: $B^+ \to \overline{D}{}^0(\pi^+\pi^-)\mu^+\nu_\mu$
- $BF = (3.34 \pm 0.14)$. 10⁻⁵ -> Stat. Unc. ~ 3%

Signal simulated with BCL/BSZ FFs [PRD104,034032 (2021)] and mpipi shape reweighted to include ρ –w interference

B⁺→ $\pi^+\pi^-\mu^+\nu_\mu$ shapes from DFN/PYTHIA simulation [JHEP 06 (1999) 017] Phase-space simulation

- Main Backgrounds: MVA (Isolation) $B^+ \to \overline{D}^0(\pi^+\pi^-X^0)\mu^+\nu_\mu(X)$ $B^{+,0} \to X_u \mu^+\nu_\mu$ (varius charmless semileptonic decays) $B^+ \to \pi^+\pi^-\mu^+\nu_\mu$ (with non-resonant $\pi^+\pi^-$) Comb Bkg: modelled with SS data MisID Bkg: modelled with data-driven methods
- Measurement of $|V_{ub}|$ and FFs from fit to dB/dq², following [PRD 104,034032 (2021)]
- Predictions of the FFs V(q²), $A_1(q^2)$ and $A_{12}(q^2)$ based on light-cone sum rules (LCSR) calculations valid in $q^2 \lesssim 14 \text{GeV}^2/c^4$ [PRD 79,013008 (2009)].
- BCL/BSZ parametrisations to extrapolate FFs in the full region [JHEP08,098 (2016)]

Strange physics at LHCb

- LHCb obtained **leading strange physics measurements**, particularly searching for their rare decays, publishing best measurements in $K_s^0 \rightarrow \mu^+ \mu^-$, $K_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$, and $\Sigma^+ \rightarrow p \mu^+ \mu^-$.

Channel	R	ϵ_L	ϵ_D	$\sigma_L \ ({MeV\over c^2})$	$\sigma_D \ ({MeV\over c^2})$
$K_S^0 \rightarrow \mu^+ \mu^-$	1	1.0 (1.0)	1.8 (1.8)	~3.0	~8.0
$K_S^0 \rightarrow \pi^+ \pi^-$	1	1.0 <mark>(</mark> 0.30)	1.9 (0.91)	~2.5	~7.0
$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$	1	0.93 (0.93)	1.5 (1.5)	~35	~45
$K_S^0 \to \gamma \mu^+ \mu^-$	1	o.85 (o.85)	1.4 (1.4)	~60	~60
$K_S^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	1	0.37 (0.37)	1.1 (1.1)	~1.0	~6.0
$K_L^0 \to \mu^+ \mu^-$	~1	2.7 (2.7) ×10 ⁻³	0.014 (0.014)	~3.0	~7.0
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	~2	9.0 (0.75) ×10 ⁻³	41 (8.6) ×10 ⁻³	~1.0	~4.0
$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	~2	6.4 (2.3) ×10 ⁻³	0.030 (0.014)	~1.5	~4.5
$\Sigma^+ \rightarrow p \mu^+ \mu^-$	~0.13	0.28 (0.28)	0.64 (0.64)	~1.0	~3.0
$\Lambda \rightarrow p\pi^{-}$	~0.45	0.41 (0.075)	1.3 (0.39)	~1.5	~5.0
$\Lambda \to p \mu^- \bar{\nu}_\mu$	~0.45	0.32 (0.31)	0.88 (0.86)	-	-
$\Xi^- \to \Lambda \mu^- \bar{\nu}_\mu$	~0.04	39 (5.7) ×10 ⁻³	0.27 (0.09)	-	-
$\Xi^- \to \Sigma^0 \mu^- \bar{\nu}_\mu$	~0.04	24 (4.9) ×10 ⁻³	0.21 (0.068)	-	-
$\Xi^- \rightarrow p \pi^+ \pi^-$	~0.04	0.41 (0.05)	0.94 (0.20)	~3.0	~9.0
$\Xi^0 \rightarrow p \pi^-$	~0.03	1.0 (0.48)	2.0 (1.3)	~5.0	~10
$\Omega^- \to \Lambda \pi^-$	$\sim 10^{-3}$	95 (6.7) ×10 ⁻³	0.32 (0.10)	~7.0	~20

Multiplicity of particles produced in a single pp interaction at $\sqrt{s} = 13$ TeV within LHCb acceptance.

Semileptonic Hyperon Decays

- The **LFU test observable** defined as the ratio between muon and electron modes [<u>Phys. Rev. Lett. 114 no. 16, (2015</u>]]

$$R^{\mu e} = \frac{\Gamma(B_1 \to B_2 \mu^- \bar{\nu}_\mu)}{\Gamma(B_1 \to B_2 e^- \bar{\nu}_e)} = 0.153 \pm 0.008$$

is **sensitive** to non standard scalar and tensor contributions.

- In the SM, the **dependence** on the form factors is anticipated to **simplify** when considering the **ratio**.

$$R_{\rm SM}^{\mu e} = \sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}} \left(1 - \frac{9}{2} \frac{m_{\mu}^2}{\Delta^2} - 4 \frac{m_{\mu}^4}{\Delta^4} \right) + \frac{15}{2} \frac{m_{\mu}^4}{\Delta^4} \operatorname{arctanh}\left(\sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}}\right)$$

 $g_1(0) = hyperon \ axial \ charge$

- Clean theoretical prediction for the decay rate (going to order δ^2)

$$\Gamma^{\rm SM}(B_1 \to B_2 e^- \bar{\nu}_e) \simeq \frac{G_F^2 |V_{us} f_1(0)|^2 \Delta^5}{60\pi^3} \Big[\Big(1 - \frac{3}{2}\delta\Big) + 3\Big(1 - \frac{3}{2}\delta\Big) \frac{g_1(0)^2}{f_1(0)^2} - 4\delta \frac{g_2(0)}{f_1(0)} \frac{g_1(0)}{f_1(0)} \Big] \quad |V_{us}|^2$$

$${}_{s}|^{2} \simeq \frac{\Gamma^{\text{SM}}(B_{1} \to B_{2}\mu^{-}\bar{\nu}_{\mu}) \ 60\pi^{3}}{R^{\mu e}G_{F}^{2} \ f_{1}(0)^{2}\Delta^{5} \left[\left(1 - \frac{3}{2}\delta\right) + 3\left(1 - \frac{3}{2}\delta\right) \frac{g_{1}(0)^{2}}{f_{1}(0)^{2}} \right]}$$

23/10/2024

Alexandre Brea

$\Lambda \rightarrow p \ \mu^- \overline{\nu}_{\mu}$

[<u>J. High Energ. Phys. 2019, 48 (2019)</u>] [<u>LHCB-FIGURE-2019-006</u>] [<u>J. Phys. Conf. Ser. 1526 012022 (2020)</u>]

- Best branching ratio measurement from BESIII (2021): $\mathscr{B}(\Lambda \rightarrow p \ \mu^- \overline{\nu}_{\mu}) = (1.48 \pm 0.21) \ge 10^{-4}$ (14.19 % Uncertainty)

 $\begin{array}{l} p_{T}\left(\nu_{\mu}\right): obtained from \ proton \ and \ muon \ (PTmiss) \\ p_{L}\left(\nu_{\mu}\right): obtained \ by \ imposing \ \Lambda \ mass \\ \rightarrow \textbf{recovered neutrino momentum components} \end{array}$

$$p_{L}(v_{\mu}) = \frac{E_{p\mu} \cdot \sqrt{A^{2} - M_{\Lambda}^{2} \cdot p_{T}^{\prime 2} - A \cdot p_{p\mu z}^{\prime} + p_{p\mu z}^{\prime} \cdot p_{T}^{\prime 2}}{\left(p_{p\mu z}^{\prime}\right)^{2} - E_{p\mu}^{2}} \qquad A = \frac{M_{\Lambda}^{2} - M_{p\mu z}^{2}}{2}$$

Dataset: 5.4 fb⁻¹ @ \sqrt{s} = 13 TeV (Run2), Normalisation: $\Lambda \rightarrow p \pi^-$

44K selected signal events $\rightarrow \sim 1.5$ % stat. unc. Dominated by systematic uncertainties Publication expected early next year

 $\mathcal{Z}^- \rightarrow \Lambda \, \mu^- \overline{\nu}_{\mu}$ proposed as the next natural step

$\Xi^- \to \Lambda \,\mu^- \bar{\nu}_{\mu}$ vs $\Xi^- \to \Lambda \,\pi^-$

 $M(p,\mu)$ [MeV/c²]

 $\boldsymbol{B}_{(\boldsymbol{c})}^{T}$ $\rightarrow \tau^{+} \nu_{\tau}$

We constrain the τ mass (M_{τ}) and use energy conservation:

same limit for the first neutrino

$B^+_{(c)} \rightarrow \tau^+ \nu_{\tau}$ with Run 2 Data

Kinematic Strategy for predicting SV

- 1. Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi} \rightarrow p_{\nu} = \frac{1}{2} \frac{M_{\tau}^2 M_{3\pi}^2}{E_{3\pi} p_{3\pi}}$
- 2. Create a grid of points between PV and TV and check the two $P_L > 0$ conditions for each point (valid SV)
- 3. Identify cluster of valid SVs and compute centroid

- Valid cluster found for \sim 50% of events.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

- Resolution comparable to the one using TRUE SV
- The main challenge will be the low signal purity

0

- Currently working on ML to remove comb. Bkg.

Feasibility of analysing these final states in progress

Cluster 1

5

-5

-10

-15

0.00

-0.05

-0.10

-0.15 🔊 ⁄

-0.20

Mean_VZ 0

TRUE SV. PTmiss=0 Predicted SV, PTmiss=0

12

Corrected B Mass [GeV/c^2]

14

$B_s^0 \to K^- \mu^+ \nu_\mu$

Prospects on $|V_{ub}|$ and FF determination in $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$

- Several FF scheme available to describe signal shape in simulation. Examples:
 - LCSR JHEP 08(2017)112
 - HPQCD 2014 PRD 90(2014)054506
 - RBC/UKQCD PRD 91(2015)074510
 - FNAL/MILC PRD 100(2019)034501
- Average of 3 LQCD results by FLAG21(Feb 23). BCL extrapolation.
- RBC/UKQCD update PRD 107 2023)114512 superseeding their previous results, with BGL.
- Bayesian inference JHEP 12 (2023) 175 with BGL
- LCSR&LQD combination arXiv:2308.04347, with modified BGL
- Baseline FF to be used not defined yet (FLAG24 average?)
 - Could provide results with different options.
 - Dependence of fitted signal yields on FF reduced using high number of bins (small variation of m_{cor} distribution inside the bin).
 - Dependence of signal efficiency per bin on FF to be detrmined.
- Same FF scheme will be used to fit $\frac{dB}{da^2}$ distribution and determine $|V_{ub}|$ via

$$\frac{d\mathcal{B}}{dq^2} = \frac{d\Gamma_{sig}^0}{dq^2} |V_{ub}|^2 \tau_B$$

$B_s^0 \to K^- \mu^+ \nu_\mu$

- Background from physics processes: shape modelled with simulation.
- Main sources are b \rightarrow c decays like $H_b \rightarrow (H_c \rightarrow K^-X)\mu^+\nu_\mu X'$ and $H_b \rightarrow c\overline{c}(\mu^+\mu^-)K^-X$ (concentrated in few q² bins).
 - Suppressed with multivariate classifier with kinematical and topological variables, trained on simulation.
- Contributions from $B_s^0 \rightarrow (K^{*-} \rightarrow K^- \pi^0) \mu^+ \nu_{\mu}$ with K*(892), K*₀(1430), K*₂(1430) with unreconstructed π^0
 - Unmeasured branching fractions
 - Poor knowledge of the expected q² shape, additional input would be useful
 - Some separation from signal due to the missing particle
 - Partially suppressed with neutral isolation criteria
- Smaller contributions from random $K^-\mu^+$ combinations and semileptonic decays with misidentified $K^-.$
 - Suppressed with multivariate classifier trained on $K^{\pm}\mu^{\pm}$ data and PID cuts. Shape modelled with data-driven methods.

Take into account

- B momentum reconstruction in semileptonic decays challenging at LHCb
 - Main production from gluons at LHC \rightarrow large variation of B momenta
 - LHCb forward acceptance \rightarrow partial coverage of the complete $b\bar{b}$ event .

